Supporting Information

for

"Synthetic Studies towards Anisatin:

A Formal Synthesis of (±)-8-Deoxyanisatin"

by Teck-Peng Loh and Qi-Ying Hu

(14 pages)

3-p-Tolylbutyric acid methyl ester (8). To a suspension of Cul (952 mg, 5 mol%) in ether (50 mL), was added an ethereal solution of p-tolylmagnesium bromide (99.9 mmol, 99.9 mL, 1 M in ether) at 0 °C. The mixture was allowed to stir at this temperature for 1 h. At the end of which, a solution of methyl crotonate (2.00 g, 20.0 mmol, 2.12 mL) in ether was added dropwise to the resultant mixture and stirring was continued for another 3 h. The mixture was poured into cold 1 M HCl (150 mL) and extracted with ether (5 \times 80 mL). The combined extracts were washed with brine (200 mL), dried (Na₂SO₄) and evaporated via vacuo. The residue was distilled under reduced pressure to afford methyl ester **8** (3.09 g, 80% yield) as a colorless liquid: R_f 0.67 (10:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.11 (s, 4H), 3.62 (s, 3H), 3.31-3.18 (m, 1H), 2.61 (dd, J = 15.0, 6.62 Hz, 1H), 2.52 (dd, J = 15.0, 8.01 Hz, 1H), 2.32 (s, 3H), 1.28 (d, 3H, J = 6.97, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 173.4, 143.2, 136.4, 129.7, 127.0, 51.9, 43.3, 36.5, 22.3, 21.5; IR (film) 1740, 1515, 1166 cm⁻¹; HRMS Calcd for $C_{12}H_{16}O_2$ [M⁺]: 192.1150. Found: 192.1141.

3,6-Dimethylindan-1-one (9). A mixture of methyl ester **8** (400 mg, 2.08 mmol) and excess polyphosphoric acid (10 mL) was heated at 90°C for 48 h. The resulting dark brown slurry was poured onto ice and extracted with ether (5 × 20 mL). The combined extracts were washed with brine (70 mL), dried (Na₂SO₄) and evaporated *via vacuo*. The residual oil was purified *via* column chromatography (100:1 hexane/ethyl acetate), yielding 310 mg (1.93 mmol, 93 %) of indanone **9** as a yellow oil: R_f 0.78 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ

7.52 (s, 1H), 7.44–7.41 (m, 1H), 7.38 (d, J = 8.01 Hz, 1H), 3.44–3.34 (m, 1H), 2.93 (dd, J = 19.1, 7.32 Hz, 1H), 2.40 (s, 3H), 2.27 (dd, J = 19.1, 3.48 Hz, 1H), 1.38 (d, J = 7.32 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.5, 157.4, 137.3, 136.6, 135.9, 124.9, 123.3, 45.7, 32.4, 21.4, 21.0; IR (film) 1712, 1615 cm⁻¹; HRMS Calcd for $C_{11}H_{12}O$ [M⁺]: 160.0888. Found: 160.0881.

3,6-Dimethylindan-1-ol (10). A suspension of NaBH₄ (11.3 mg, 0.30) mmol) in MeOH (3 mL) was stirred at -78 °C for 30 min, followed by the addition of CeCl₃·7H₂O (110 mg, 0.30 mmol) and the mixture was stirred for another 30 min. A solution of indanone 9 (32.0 mg, 0.20 mmol) in MeOH (2 mL) was added dropwise to the mixture and stirred at -78 °C for a further 2 h. 1 M HCl was added to the resultant mixture till effervescence ceased. The mixture was extracted with ether (5 \times 20 mL) and the combined extracts were washed with brine (30 mL), dried (Na₂SO₄) and evaporated via vacuo. The residual oil was purified via column chromatography (20:1 hexane/ethyl acetate), yielding 310 mg (1.93 mmol, 96 %) of indanol **10** as a 10:1 syn:anti diastereomeric mixture: R_f 0.47 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (s, 1H), 7.14 (s, 2H), 5.13 (dd, J = 7.31, 7.31 Hz, 1H), 3.07–3.00 (m, 1H), 2.74 (ddd, J = 12.5, 6.97, 6.97 Hz, 1H), 2.39 (s, 3H), 1.53–1.43 (m, 1H), 1.37 (d, J = 6.62 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 145.1, 144.3, 136.3, 128.8, 124.2, 122.9, 74.8, 45.7, 35.8, 21.2, 20.2; IR (film) 3351, 3258, 1486, 1340, 1053, 814 cm⁻¹; HRMS Calcd for C₁₁H₁₄O [M⁺]: 162.1045. Found: 162.1038.

3-Hydroxy-1,5-dimethylindan-4-carboxylic acid (6). A solution of indanol **10** (80.0 mg, 0.49 mmol), dry hexane (4 mL) and N,N,N',N'tetramethylethylenediamine (freshly distilled from CaH₂, 229 mg, 0.30 mL, 1.97 mmol) was treated dropwise with *n*-BuLi (1.23 mL, 1.6 M in hexane) at rt. After 20 min, the resulting pink mixture was heated at reflux for 3 h. The resulting deep red mixture was cooled to 0 °C, and gaseous CO₂ was bubbled through the solution overnight, with stirring. The reaction mixture was then diluted with ether (35 mL) and acidified with 1 M HCl to pH 2-3. The layers were separated, and the aqueous layer was extracted with ethyl acetate (5 \times 25 mL), and the combined organic layers were washed with brine, dried (Na2SO4), and evaporated via vacuo to afford 65.9 mg of carboxyindanol 6 (0.32 mmol, 65% yield) as a pale brown oil, which solidified upon standing. The crude carboxyindanol 6 thus obtained is sufficiently pure for the next step. The NMR data were determined for the corresponding methyl ester, prepared by the action of excess ethereal CH₂N₂, followed by purification *via* column chromatography (8:1 hexane/ethyl acetate): R_f 0.48 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (d, J = 8.01 Hz, 1H), 7.16 (d, J = 8.01 Hz, 1H), 5.27 (dd, J =7.31, 4.53 Hz, 1H), 3.94 (s, 3H), 3.07 (m, 1H), 2.62 (ddd, J = 13.6, 8.01, 7.31 Hz, 1H), 2.45 (s, 3H), 1.70 (ddd, J = 13.6, 5.58, 4.53 Hz, 1H), 1.35 (d, J = 6.97 Hz, 3H); 13 C NMR (75.4 MHz, CDCl₃) δ 170.1, 147.0, 145.3, 136.1, 131.5, 127.8, 126.7, 74.6, 52.1, 42.3, 36.9, 22.0, 20.8; IR (KBr) 3384, 1732, 1490, 1268, 1130, 1051 cm⁻¹; HRMS Calcd for $C_{13}H_{16}O_3$ [M⁺]: 220.1099. Found: 220.1084.

3-Hydroxy-1,5-dimethyl-2,3,4,7-tetrahydro-1*H*-indene-4-carboxylic acid methyl ester (5). Carboxyindanol 6 (400 mg, 1.94 mmol) was dissolved in liquid NH₃ (10 mL) at -78 °C under nitrogen. To the rapidly stirred solution was added sodium metal in small pieces until a blue color persisted (ca. 223 mg, 9.70 mmol, over a 15 min period). Towards the end of the addition, a precipitate formed in the reaction mixture. The mixture was then allowed to reflux for 1 h, at the end of which solid ammonium chloride (830 mg, 15.5 mmol) was added to quench the reaction and the ammonia was allowed to evaporate. The solid residue was partitioned between a saturated NaH₂PO₄ solution (10 mL) and ether (5 \times 20 mL). The combined extracts were washed with brine (50 mL), dried (Na₂SO₄) and evaporated *via vacuo*. The crude acid was immediately esterified at 0 °C with ethereal CH₂N₂, and the ether evaporated via vacuo. The residual oil was purified via column chromatography (6:1 hexane/ethyl acetate), yielding 259 mg (1.16 mmol, 60% over two steps) of 1,4-diene **5** as a pale yellow oil: R_f 0.63 (2:1 hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 5.68 (br s, 1H), 4.69 (br s, 1H), 3.71 (s, 3H), 3.72-3.64 (m, 1H), 2.90-2.83 (m, 1H), 2.70 (br s, 2H), 2.04 (ddd, J = 13.97, 7.66, 2.79 Hz, 1H), 1.85-1.68 (m, 1H), 1.74 (s, 3H), 1.00 (d, J = 1.68 Hz, 1.74 (s, 3H), 1.00 (s, 3H), 1.006.97 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 174.3, 144.7, 131.4, 129.3, 122.0, 77.8, 52.3, 48.2, 43.1, 38.7, 25.7, 21.4, 19.0; HRMS Calcd for C₁₃H₁₈O₃ [M⁺]: 222.1256. Found: 222.1260.

7a-Dimethylcarbamoylmethyl-1,5-dimethyl-2,6,7,7a-tetrahydro-1*H*-indene-4-carboxylic acid methyl ester (13). A solution of 1,4-diene 5 (2.22 g,

9.99 mmol) and *N*,*N*-dimethylacetamide dimethyl acetal (6.65 g, 7.30 mL, 49.9 mmol) in xylene (70 mL) was refluxed for 48 h. After which, xylene was removed *via vacuo* and the residual oil was purified *via* column chromatography (5:1 hexane/ethyl acetate), yielding 1.10 g (4.99 mmol, 50% yield) of amide **13** as a yellow oil: R_f 0.20 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 5.53 (br s, 1H), 3.80 (s, 3H), 2.97 (s, 3H), 2.87 (s, 3H,), 2.76 (dd, J = 12.5, 5.23 Hz, 1H), 2.57–2.46 (m, 1H), 2.40 (ddd, J = 16.7, 7.67, 3.48 Hz, 1H), 2.27 (d, J = 15.3 Hz), 2.19 (d, J = 15.3 Hz), 2.19–2.10 (m, 2H), 2.03–1.95 (m, 1H), 1.84 (s, 3H), 1.32 (td, J = 12.5, 5.92 Hz, 1H); ¹³C NMR (75.4 MHz, CDCl₃) δ 172.2, 169.2, 143.8, 141.4, 124.7, 123.0, 51.5, 48.9, 46.7, 38.8, 38.1, 35.6, 32.1, 31.3, 31.0, 21.1, 14.0; IR (film) 1726, 1634, 1462, 1278 cm⁻¹; HRMS Calcd for $C_{17}H_{25}NO_3$ [M*]: 291.1834. Found: 291.1834.

(4-Benzyloxymethyl-7a-dimethylcarbamoylmethyl-1-methyl-5-methylene-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl)acetic acid methyl ester (4). LDA (2.75 mL,1.5 M in cyclohexane) was added dropwise to a solution of amide 13 (150 mg, 0.51 mmol) in THF (3 mL) at -78 °C, and the solution was stirred for 1 h. BnOCH₂Cl (161 mg, 0.16 mL, 1.03 mmol, 90% purity) was added, and the mixture was allowed to warm to rt and stirred for a further 2 h. Water (1 mL) was added to quench the reaction and extracted with ethyl acetate (5 × 10 mL). The combined extracts were washed with brine (15 mL), dried (Na₂SO₄) and evaporated *via vacuo*. The residual oil was purified *via* column chromatography (3:1 hexane/ethyl acetate), yielding 87.6 mg (0.21 mmol, 40% yield) of methyl

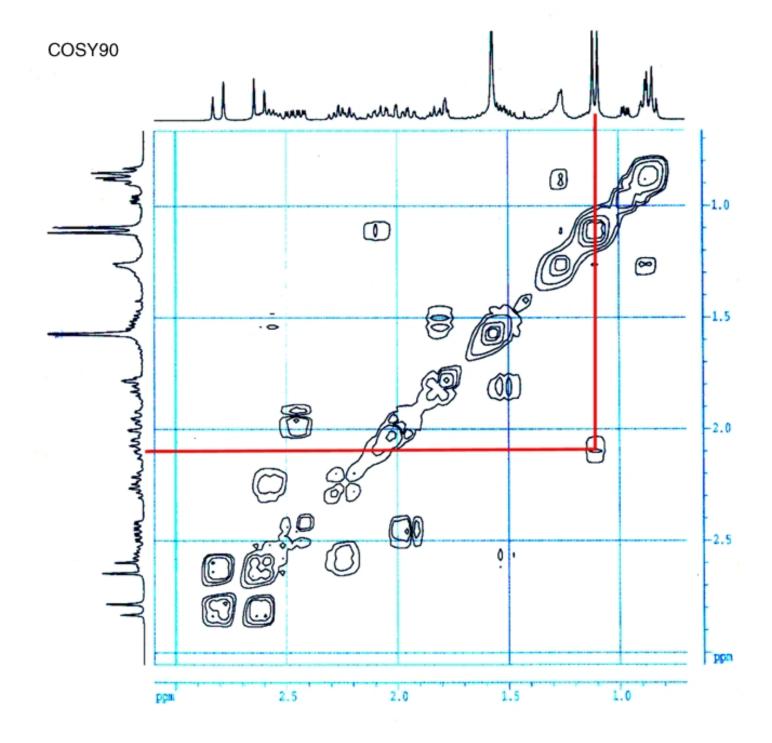
ester 4 as a colourless oil: R_f 0.21 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.25 (m, 5H), 5.57 (t, J = 2.44 Hz, 1H), 5.09 (s, 1H), 5.02 (s, 1H), 4.54 (s, 2H), 4.06 (d, J = 8.71 Hz, 1H), 3.83 (d, J = 8.71 Hz, 1H), 3.61 (s, 3H), 2.98 (s, 3H), 2.89 (s, 3H), 2.71–2.60 (m, 1H), 2.57–2.50 (m, 1H), 2.49 (d, J = 17.1 Hz, 1H), 2.21 (d, J = 17.1 Hz, 1H), 2.09–1.96 (m, 1H), 1.25 (td, J = 12.9, 4.18 Hz), 0.95 (d, J = 6.97 Hz); ¹³C NMR (75.4 MHz, CDCl₃) δ 173.4, 171.2, 147.4, 145.3, 138.0, 128.3, 127.6, 127.5, 126.1, 111.2, 74.1, 73.5, 56.0, 52.0, 51.0, 45.5, 39.4, 39.2, 39.2 (overlap), 37.5, 35.4, 32.6, 31.4, 15.0; IR (film) 1731, 1650, 1450, 1397, 1218, 1099 cm⁻¹; HRMS Calcd for $C_{25}H_{33}NO_4$ [M⁺ – CH_3]: 410.2331. Found: 410.2313.

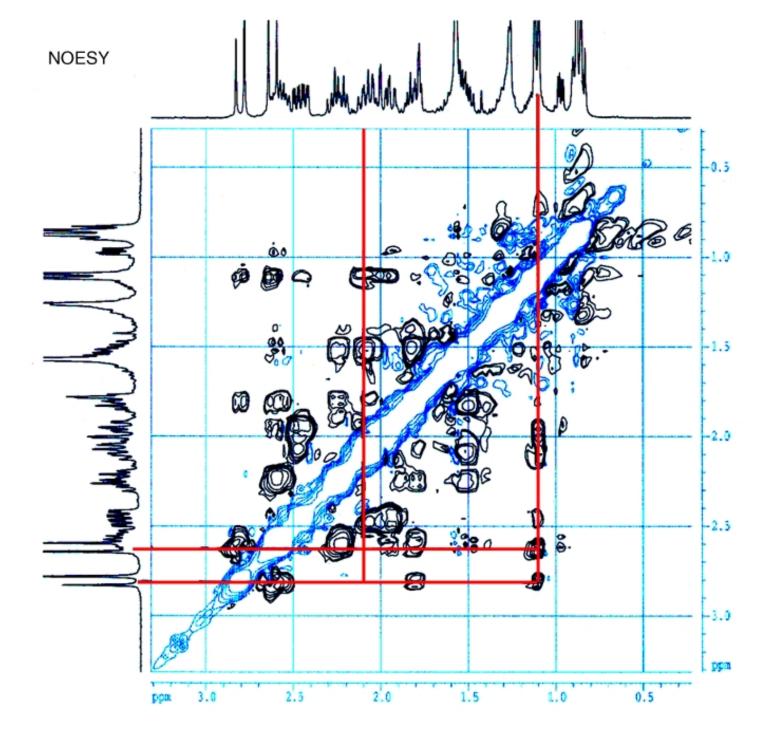
2-(7-Benzyloxymethyl-7-hydroxymethyl-3-methyl-6-methylene-

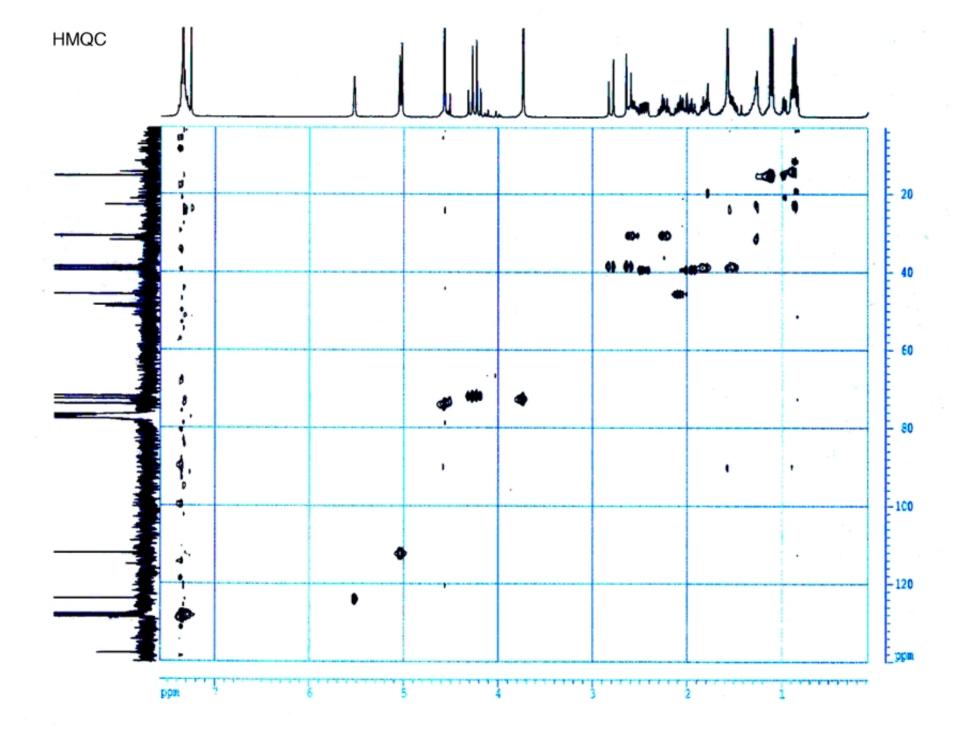
2,3,4,5,6,7-hexahydroinden-3a-yl)-*N,N*-dimethylacetamide (14). To a solution of methyl ester **4** (85.0 mg, 0.20 mmol) in THF (3 mL) was added excess LiBH₄ (1 mL, 2 M in THF) and the mixture was allowed to stir at rt for 48 h. 1 M HCl was added dropwise till a clear solution was obtained. The resulting solution was extracted with ethyl acetate (5 × 10 mL), and the combined extracts were washed with brine (15 mL), dried (Na₂SO₄) and evaporated *via vacuo*. The residual oil was purified *via* column chromatography (3:1 hexane/ethyl acetate), yielding 38.3 mg (0.10 mmol, 50% yield) of amide **14** as a colourless oil: R_f 0.08 (2:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 5.73 (d, J = 2.09 Hz, 1H), 4.97 (s, 1H), 4.96 (s, 1H), 4.59 (d, J = 12.5 Hz, 1H), 4.53 (d, J = 12.5 Hz, 1H), 3.74 (s, 2H), 3.70 (d, J = 11.5 Hz, 1H), 3.56 (d, J = 11.5 Hz, 1H),

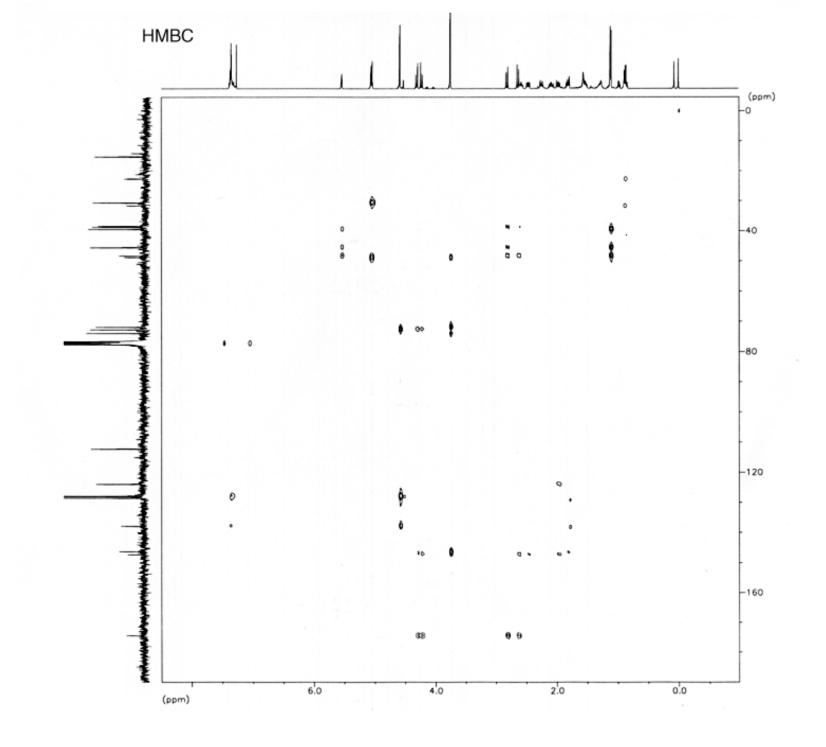
3.09 (s, 3H), 2.91 (s, 3H), 2.49 (d, J = 15.7 Hz, 1H), 2.37 (d, J = 15.7 Hz, 1H), 2.31–2.20 (m, 3H), 2.08–2.00 (m, 1H), 1.96–1.87 (m, 1H), 1.75–1.66 (m, 1H), 1.56–1.47 (m, 1H), 0.99 (d, J = 6.96 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 172.9, 148.3, 144.9, 138.7, 129.5, 128.2, 127.6, 127.3, 110.5, 73.6, 73.5, 65.7, 51.4, 50.9, 47.3, 40.1, 39.4, 38.0, 36.0, 35.5, 30.7, 14.1; IR (film) 1624, 1400, 1260 cm⁻¹; HRMS Calcd for $C_{24}H_{33}NO_{3}$ [M⁺]: 383.2460. Found: 383.2463.

(7-Benzyloxymethyl-7-hydroxymethyl-3-methyl-6-methylene-


2,3,4,5,6,7-hexahydroinden-3a-yl)acetic acid (15). A mixture of amide 14 (20.0 mg, 52.1 μmol) and excess KOH (1 pellet, 250 mg) in ethylene glycol (1 mL) was heated to 200 °C in a sealed tube for 12 h. Water (10 mL) was added to the resultant mixture followed by extraction with ether (3 \times 10 mL). The aqueous layer was acidified to pH 2 with 1 M HCl and extracted with ether (5 \times 15 mL). The combined extracts were washed with brine (20 mL), dried (Na₂SO₄) and evaporated via vacuo to afford 17.0 mg of crude carboxylic acid 15: 1H NMR (300 MHz, CDCl₃) δ 7.23–7.31 (m, 5H), 6.05 (d, J = 2.79 Hz, 1H), 4.97 (s, 1H), 4.78 (s, 1H), 4.58, (s, 2H), 3.89 (d, J = 11.9 Hz, 1H), 3.80 (d, J = 15.7 Hz, 1H), 3.78 (d, J = 15.7 Hz, = 11.9 Hz, 1H, 3.77 (d, J = 15.7 Hz, 1H), 2.49 (d, J = 13.6 Hz, 1H), 2.34 (d, J = 1.00 Hz, 1Hz)13.6 Hz, 1H), 2.26-2.10 (m, 5H), 1.66-1.58 (m, 1H), 1.47-1.39 (m, 1H), 1.24 (d, J = 5.93 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 173.9, 148.3, 145.5, 137.2, 132.8, 128.7, 128.1, 127.9, 110.7, 78.3, 74.0, 68.5, 50.6, 49.7, 46.9, 42.5, 37.8, 37.2, 30.7, 12.2; IR (film) 1701, 1555, 1261 cm⁻¹; HRMS Calcd for C₂₂H₂₈O₄ [M⁺]:


356.1988. Found: 356.2001. The crude acid thus obtained was used directly for lactonization.


6-Benzyloxymethyl-2-methyl-13-methylene-8-oxatricyclo[4.4.3.0^{1,5}]tridec-4-en-9-one (3).


To a solution of crude carboxylic acid **15** (17.0 mg) in toluene was added catalytic amount of p-TsOH, and the solution was heated at 70 °C for 30 min. Water (10 mL) was added and extracted with ethyl acetate (5 × 15 mL). The combined extracts were washed with brine (20 mL), dried over Na₂SO₄ and evaporated *via vacuo*. The residual oil was purified *via* column chromatography (10:1 hexane:ethyl acetate), yielding 12.4 mg (36.5 μ mol, 70% over two steps) of ϵ -lactone **3** as a colourless oil: R_i 0.36 (4:1 hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.34 (m, 5H, Ph—H), 5.53 (br s, 1H, 3-H), 5.04 (s, 1H, 13-H), 5.02 (s, 1H, 13-H), 4.57 (s, 2H, 1'-H), 4.30 (d, J = 12.5 Hz, 1H, 11-H), 4.21 (d, J = 12.5 Hz, 1H, 11-H), 3.74 (s, 2H, 12-H), 2.81 (d, J = 14.3 Hz, 1H, 8-H), 2.62 (d, J = 14.3 Hz, 1H, 8-H), 2.63–2.53 (m, 1H, 6-H), 2.46 (ddd, J = 15.3, 7.7, 2.8 Hz, 1H,

2-H), 2.31–2.19 (m, 1H, 6-H), 2.17–2.05 (m, 1H, 1-H), 2.07–1.92 (m, 1H, 2-H), 1.86–1.77 (m, 1H, 7-H), 1.60–1.47 (m, 1H, 7-H), 1.11 (d, J = 7.0 Hz, 3H, 10-H); ¹³C NMR (75.4 MHz, CDCl₃) δ 174.3 (9-C), 147.2 (3a-C), 146.2 (5-C), 137.8 (2'-C), 128.5 (4'-C and 6'-C), 127.9 (3'-C and 7'-C), 127.8 (5'-C), 123.8 (3-C), 112.1 (13-C), 73.8 (1'-C), 72.5 (12-C), 71.8 (11-C), 48.8 (4-C), 48.2 (7a-C), 45.6 (1-C), 39.4 (2-C), 38.7 (7-C), 38.5 (8-C), 30.6 (6-C), 15.2 (10-C); IR(film) 1734, 1638, 1452, 1185, 1095 cm⁻¹; HRMS Calcd for $C_{22}H_{26}O_3$ [M+]: 338.1882. Found: 338.1909.

